Keeping Mine-Water Membranes Clean

Steve Chesters Genesys International

Agenda

- What is a Reverse Osmosis Membrane?
- What do membranes do?
- Why useful in mining?
- Where are they used?
- What are the problems?
- New methods to keep membranes clean

First reference – 1970 Written by Rex Chainbelt Inc. for US Dept. of the Interior.

Concluded good quality water could be obtained but problems of membrane fouling, iron & gypsum(calcium sulphate)

What is reverse osmosis?

August 26-29, 2018 · Ottawa, Ontario,

000201

Thin Film Composite Polyamide Membrane

Organized by: (MET SOC) SME THIS

Spiral Wound Element

Membrane Leaves

RO Membrane Elements

Proven technology

- +2.5M membrane elements
- +15,000 plants
- Producing 130M m³/day
- Supply 300m people

RO Membrane System 75% Recovery 4 cycles of concentration

Reverse Osmosis Installation

Membrane Filtration Spectrum

Reverse Osmosis (RO)

- Removes all suspended solids & 99% soluble cations & anions
- ~100 atomic mass unit (amu) molecular cut-off

Nano-filtration (NF)

- Same as RO but membrane pores are larger
- Divalent ions rejected, monovalent pass through
- 200-400 (amu) molecular cut-off

Ultra-filtration (UF)

- Excludes particles 0.001-0.1µm
- Bacteria, viruses & colloids retained

Micro-filtration (MF)

- Excludes particles 0.1-10µm
- Separates microorganisms & suspended particles

Membrane use in Mines

Mining- 4th largest water consumer Gold- 1,155,000 litres/kg Copper- 18,000 litres/kg Aluminium – 8,000 litres/kg Coal – 6,000 litres/kg >90% minewater reusable by applying RO & MF (*Szyplinska, 2012*) Figure 1. Water intensity of key minerals and metals

Water use
۵

Source: http://www.waterworld.com/articles/wwi/print/volume-27/issue-1/regulars/creative-finance/thirsty-world-of-mining.html

Membrane use in Mining

- Enhanced Metal recovery
- Leach solution recovery
- Acid Mine Drainwater clean up
- Lithium Brine concentration and divalent ion removal
- Zero liquid discharge
- Dewatering mines
- Man camp drinking water

Yanacocha Gold Mine Peru

- 3,500-4,100m asl in Andes Mountains
- 30miles north of Cajamarca city

Yanacocha Gold Mine Peru

- Lime blended, heap leached
- Free cyanide 30-50 mg/L
- Drip & spray Irrigation
- Excess rainwater dilutes the leachate

Yanacocha Gold Mine Peru

• Barren pond storage prior to treatment and disposal

Yanacocha Gold Mine Peru

- RO plant concentrates pregnant leach
- RO plant treats barren pond water
- First plant installed 2003

Yanacocha Gold Mine Peru

Concentration of rain diluted pregnant liquor

7 plants @250 m³/hr each

- Dewater pregnant liquor for Merrill Crowe extraction process
- Remove excess cyanide for reuse
- Remove excess metals

Clean barren liquor

5 plants @500m³/hr each

- Treated for discharge to environment
- Additional gold recovered via carbon column
- Concentrate returned to heap leach pond

OPEX 70% less than that of a conventional precipitation plan

Source: MDS Membrane Separations & System Case Studies

Technologies and

Yanacocha RO plants

- Membrane autopsy
- Calcium sulphate scale
- Antiscalant lab test
- Using Genesys CAS October 2013

Genesys Mining Research

Innovate UK Technology Strategy Board

UK Government Research grant for \$700k £500k

- Calcium sulphate scale research
- Threshold testing
- Develop new antiscalants & cleaners
- Application testing on different minewaters
- Minewater scaling prediction software

Research Project

Database identifying 800 mines

389 operational membrane plants

Main Adopters

- Glencore
- Barrick
- Anglo American
- Rio Tinto
- Newmont

of RO Plants by location

Organized by: (Mere Soc) SME THIS

Africa

Over 1,000,000m³d⁻¹ treated by 87 plants across 15 nations.

000201

Latin America

Over 1,900,000m³d⁻¹ treated by 93 plants across 12 nations.

Australasia

Over 527,000m³d⁻¹ treated by 75 plants across 4 nations.

Companies- Alcoa, AGA, Barrick, BHP, Cameco, Citic Pacific, CNR, FMG, Glencore, Goldfields, Lynas, MMG, Newmont, Norton GF, Panoramic, Red5, RT, RHH, Saracen, Silver Lake, St Barbara

Commodity- **Gold, Iron, Nickel** Membrane Process- **UF, NF, SWRO/BWRO** Capacity- **min 185,206m** d⁻¹

SA

NT

Company- Arrium, BHP, Boss, ChallengerJV, Exco, Heathgate, Oz Minerals Commodity- Copper, Gold, Iron, Uranium, Zinc, Membrane Process- UF, SWRO/BWRO Capacity- 264,750m³d⁻¹

Company- Glencore, RT, Vista Gold Commodity- Gold, Uranium, Zinc Membrane Process- MF, BWRO

Capacity- min 24,280m d

QLD

Company- AA, BHP, Carbine, Glencore, Metro Mining, RT Commodity- Bauxite, Coal, Copper, Gold, Zinc Membrane Process- NF, UF, BWRO Capacity- min 12,550m d

NSW

Companies- Aurelia Metals, Austar Coal, Bemax, Centennial Coal, Evolution, Glencore, S32, Peabody Commodities- Coal, Copper, Gold, Minerals sands Membrane Process- UF, RO Capacity- min 28,848m d⁻¹

VIC

Companies- Alcoa, Kirkland, Liongold, Mandalay, Nystar Commodities- Aluminum, Gold, Zinc Membrane Process- RO Capacity- min 2,000m d⁻¹

Organized by: (MET SOC) SME THIS

Top 10 #plants by mining company

What can go wrong?

- SCALING
- FOULING

• PHYSICAL DAMAGE

• CHEMICAL DAMAGE

Membrane scaling & inhibition

Reverse Osmosis

Antiscalants

GENESYS THRESHOLD ANTISCALANTS

Cleaning Calcium Sulphate

Membrane scaling & inhibition

- 3 Major forms of calcium sulphate
 - Hemihydrate CaSO₄. 0.5H₂O
 - Dihydrate CaSO₄.2H₂O
 - Anhydrite CaSO₄
- 3 differing solubility isotherms
- Dihydrate form is gypsum
 - Solubility decreases with increasing temperature also with reducing temperature below 15C
 - Calcium sulphate solubility decreases in acidic conditions

by: METOSOC SME

0002018

Organized by: (MET SOC) SME THIS

Membrane scaling & inhibition

Calcium sulphate (Gypsum) scale

- Crystal platelets form in low flow cross over points of feed spacer
- Clearly displayed when spacer removed during autopsy
- Damaging to membrane
 - Scale formation initially needle platelets & rosettes resulting in blades
 - Chemical removal difficult

Threshold Tests

- New formulation Genmine AS-26, designed specially for low pH mine waters for CaSO4 scale control.
- Threshold jar tests conducted and performance compared to existing inhibitor Genesys CAS.
- Tests also conducted in the presence of various metals.

Threshold tests carried out using AS-26 and G-CAS.

Test Conditions:

- 2000ppm Ca / 20000ppm SO4,
- Metal ion levels: 0 to 300ppm
- Temp 20 C, pH 7, 24 hr
- CaSO4 Sat Index = ~7x

 6ppm Genesys CAS gave ~90% Inhibition at pH 7 and presence of no metals

Static Jar Tests:

Genesys CAS Performance at various pH

Genesys CAS and AS-26 performance at pH 2

2000ppm ca and 20000ppm SO4

CaSO4 Threshold Tests, 24hr, pH 2

0002018

Static Jar Tests with Fe

CaSO4, pH 2, 2000ppm Ca, 20K ppm SO4

Static Jar Tests with Cu

CaSO4, pH 2, 2000ppm Ca, 20K ppm SO4

Static Jar Tests with Zn

CaSO4 Threshold Tests, pH 2.2, 2000ppm Ca, 20K ppm SO4

--- No Zn --- 300ppm Zn

Static Jar Tests with Al

CaSO4 SI=8, Threshold Tests, pH 2

Conclusion:

Genmine AS-26 was very effective at preventing CaSO4 precipitation in low pH waters.

It was also effective against CaSO4 in the presence of high amounts of various metals. Requiring higher proportional dose rates with increasing levels of Fe and Al.

2.5" Pilot Plant

Flat Sheet Rig

8" Pilot Plant

8" Pilot Plant

Flat Sheet CaSO4 Cleans

Scaled Spacer

Organized by: (Mere Soc) SME THIS

This element weighed 32 Kg! Cleaned using our Pilot Plant

Results: Cleaning Heavily Scaled Element

000 2018

Genesys Software

SCALING & FOULING POTENTIAL

Membrane Master 4

IASTE

Membrane Minemaster

M

MEMBRANE MINE MASTER

Inthe Acid Real

unn kunter

New Product performance modelled in the software

Antiscalant p	oroduct range
Antiscalant	Application
GENMINE AS26	calcium sulphate acidic minewaters
GENMINE AS34	barium and silica specific
GENMINE AS45	calcium carbonate and silica specific
GENMINE AS47	broad spectrum for neutral and alkaline minewater
GENMINE AS51	silica specific
GENMINE AS65	calcium sulphate specific neutral and alkaline minewater

New Product performance modelled in the software

Cleaning pro	oduct range
Cleaner	Application
GENMINE C11	clay, organics, colloidal foulants, incorporates micro-bubbles
GENMINE C14	biofouling, clay
GENMINE C15	calcium sulphate, metals
GENMINE C17	complex deposits containing metals and calcium sulphate
GENMINE C18	metals, inorganic scale, incorporates micro-bubbles
GENMINE C20	inorganic scale, metals
GENMINE C21	inorganic scale, metals

Conventional Processing Low High Grade Ore Grade Solution Ore Mining Surface Mine Operations 2 Solvent Pregnant Liquor Extraction Barren Barren Aqueous/Organic Solution Solution Precipitation Separation Cement Copper Barren Loaded Water Slurry Solvent Solvent Solvent Decanting 30 3(Stripping Spent Pregnant Electrolyte Electrolyte Election Drying Acid or Makeup Water Addition Cement Copper Cathodes Copper Recycle To Leach Operation Source: Technical Resource Document: Extraction and Beneficiation of Ores and Minerals, Volume 4, Copper, August 1994 U.S. EPA.

Representative Hydrometallurgical Recovery of Copper

EX

Source: U.S. EPA, Office of Enforcement and Compliance Assurance.

Conclusions

- Membrane plants already in use in 390 mines
- Double benefit in enhanced metal recovery and AMD clean up
- Specific antiscalants and cleaners required to keep membranes clean
- Security of operation will lead to more widespread use.

Thank You Questions?

