
Recent Innovations to keep membranes clean

Principal sponsors



Institutional sponsor

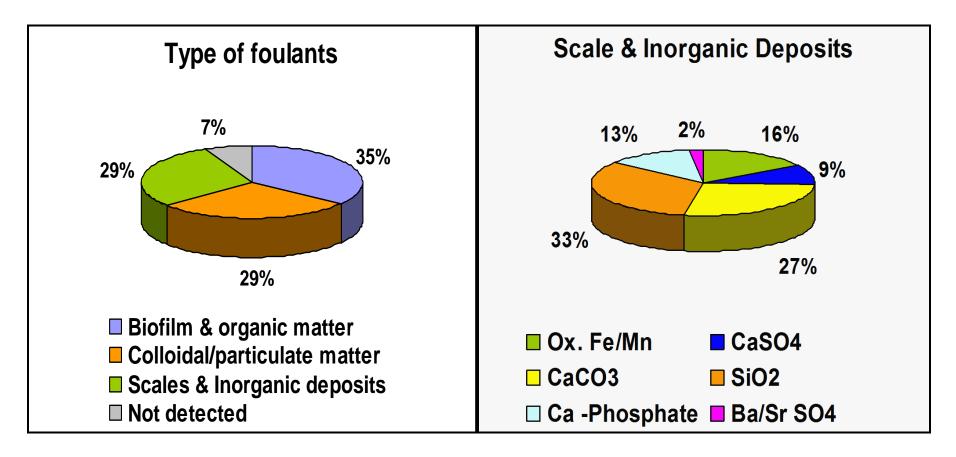
Organisers

CININA ACEPU

Mr. Stephen Chesters Managing Director Genesys International Ltd

Why keep membranes clean

- Poor permeate quality and flow, increased operation pressures
- Higher energy requirements
- Water wastage lower recoveries
- Operational Expenditure membrane cleaning, membrane replacement



19-24 September 2010

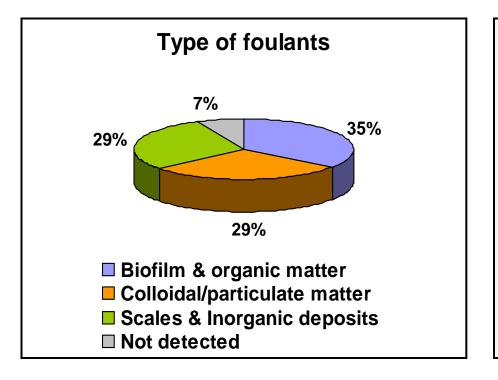
Membrane Autopsies 2002-2009

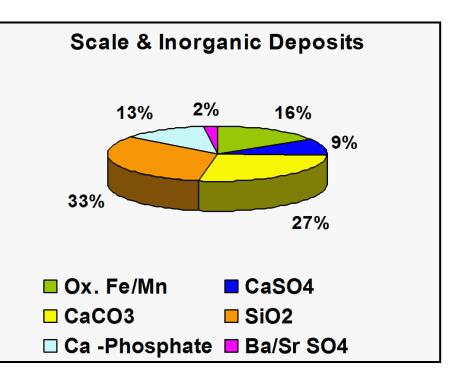
Water Association

World Water Congress & Exhibition

19-24 September 2010

Membrane pressure damage




Montréal 2010

Montréa

Autopsy results 2001 - 2009

Montréal 2010

Recent Innovations

Scaling Advanced antiscalants for calcium

phosphate, calcium sulphate & silica

- Cleaners Remove clay & biofouling
- Flocculant Reduce use of iron & aluminium coagulant
- Lab techniques Autopsy and particle counting

Acid v's Antiscalant

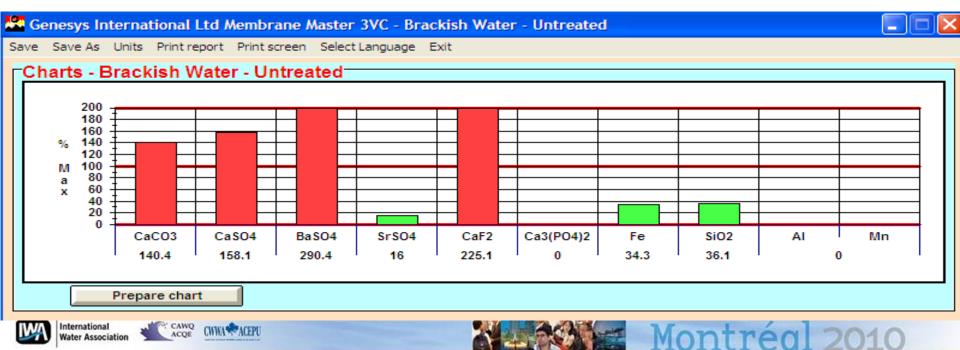
- Acid dosing traditionally used to control scale in membrane plants - LSI
- High dose rate v's antiscalant
- Health & Safety transport, storage and handling issues
- Poor activity against some scales

CAWQ

CWWA ACEPU

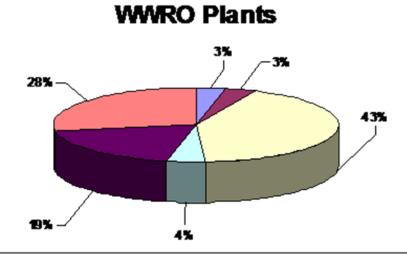
ernational

er Association


Montréal

Feed Water Challenges

- Capacity of BWRO has increased by 7 million m³/day since 2002
- Scarcity of water requires use of "difficult" feed waters
- High in silica, sulphates, phosphates
- Drive to reduce operation costs
- Demand to increase recovery rates

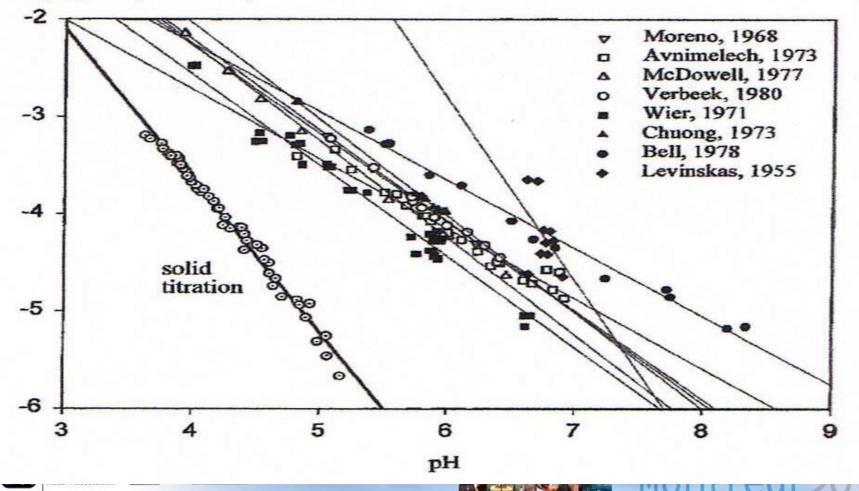


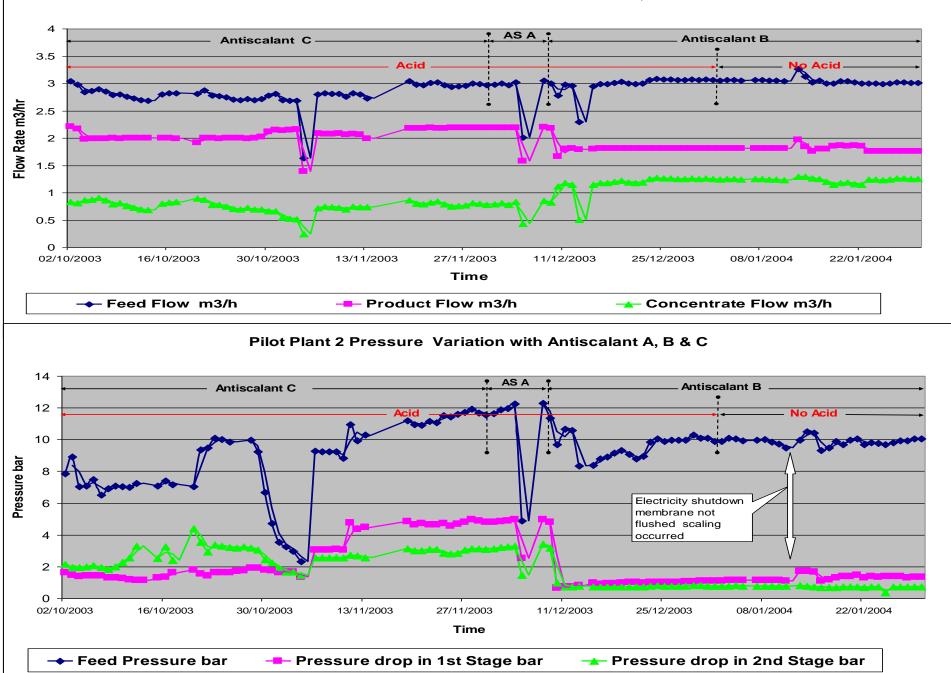
WWRO Plant

- Current Total Capacity 2,342,079 m³/day (IDA)
- Total 713 plants & increasing!
- Largest in Middle East (Sulaibiya 375,000 m³/day)
- New projects in Australia, Singapore & Europe
- WWRO approx 50% of cost of SWRO.
- Calcium phosphate Issues

🔲 Germany 🔳 India 🗋 Japan 🗋 Spain 🔳 USA 🔲 Rest of World

Montréal 2010


Calcium Phosphate Chemistry							
Chemical Name	Formula	Abb. Name	Mineral Name	Structure	Solubility Product mol/litre		
Amorphous calcium phosphate rock	Ca ₉ (PO ₄) ₆	ACP		Amorphous			
Monocalcium phosphate	$Ca(H_2PO_4)_2$	МСР					
Dicalcium phosphate dihydrate	CaHPO ₄ ·2H ₂ O	DCPD	Brushite	Amorphous	2.32 x 10 ⁻⁷		
Dicalcium phosphate	CaHPO ₄	DCP	Monetite	Amorphous	1 x 10 ⁻⁷		
Tricalcium phosphate	$Ca_3(PO_4)_2$	ТСР	Whitlockite	Amorphous	2.07 x 10 ⁻³³		
Tetracalcium phosphate	$Ca_4O(PO_4)_2$	TTCP	Hilgenstockite	Amorphous			
Pentacalcium hydroxylapatite	Ca ₅ (PO ₄) ₃ (OH)	НАР	Hydroxyapatite	Hexagonal	2.34 x 10 ⁻⁵⁹		
Pentacalcium fluoroapatite	$Ca_5(PO_4)_3(F)$	FAP	Fluoroapatite	Hexagonal	3.16 x 10 ⁻⁶⁰		
Octacalcium phosphate	$Ca_8(HPO_4)_2(PO_4)_4$	OCP			2 x 10 ⁻⁴⁹		
Calcium pyrophosphate	Ca ₂ P ₂ O ₇	СРР					
International Water Association CANOP CIMARACEPU ACCEPU AND MONTRed 2010							

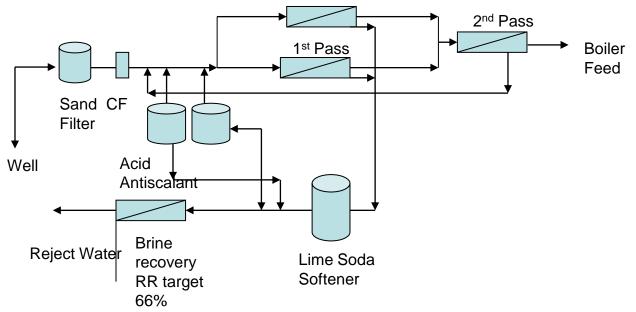


Hydroxyapatite Solubility

 $\log([HAP]/mol.L^{-1})$

Pilot Plant 2 Flow Variation with Antiscalant A, B & C

Genesys PHO


- Initial trial work shows excellent results
- Confirmed under operational conditions
- Reduces or stops need for acid dosing
- Performance exceeds conventional anti-scalants
- 3-5 mg/l Genesys PHO increases saturation by 150 times
- Highly effective against all scaling species
- Enhanced threshold inhibition is key to effectiveness

Efficient operation at high sulphate levels

2 pass BWRO - Hydranautics CPA3 & 4

•1st pass3,400m³/day 64% RecoveryActual 48%•2nd pass1,400m³/day 85% RecoveryActual 85%•Brine recovery66% recoveryActual - inoperable

Operational Issues

- High calcium and sulphate levels
- Acid dosing 132kg/day HCI
- 1st. Pass Recovery only 48%
- Feed Pressure 2 Bar above Target.
- High ΔP
- Membranes cleaned every 4 weeks
- Membranes replaced annually

Montréal 2010

19-24 September 2010

Genesys Solution

- Membrane Autopsy
- •Detailed Site Survey & feed water analysis
- Feed Water software projection
- On aita trial with Canadya CAS

•On site that with Genesys CAS											
🐱 Genesys In	ternational L	td Membrane	Master 3VC - B	rackish Water -	Untreated	1				193	
Save Save As	Units Print rep	port Print screer	n Select Language	Exit					JI B	19	
Charts - B	Brackish W	/ater - Untre	ated							100	
200									7H-N	1 11	CT ALLANAR
180	+									1 1	
% 140 120									2		
M 100										1 Page	CURSAL PLAN
a 60 x 60 40									Acc.V Spo	t Magn Det	WD 50 μm
20									20.0 KV 5.6	500X BSE	10.0 GA031102
	CaCO3		aSO4 SrSO4		a3(PO4)2	Fe	SiO2	AI	Mn		
	140.4	158.1	290.4 16	225.1	0	34.3	36.1	0			
	Prepare chart	1									
										J	
Enter wat	er analysis				r]	
		Calcium	785.0		ulphate	2148.9		Cations, me	<u> </u>		
		Magnesium Sodium	155.0		hloride	960.0			74.3		
		Potassium	12.0		bonate	141.0		Anions, me	<u>· </u>		
		Barium	0.01		bonate	0.0		1	75.1		
		Strontium	1.0		Nitrate	10.0		TDS, mg/L	745.4		
		Iron	0.02		Silica	24.0					
		Aluminium	0.0	Pho	sphate	0.0	_				
	•	Manganese	0.0					Adjust ion	balance	+ 10	éal 2010
Analysis	Operation	Untreated	Treated	Optimise	Chart	ts D	ose	Indices	Analyses	1110	
					J						

Genesys Recommendations

- Genesys CAS replaced conventional antiscalant
- Chlorine, acid and bisulphite dosage stopped
- Recovery increased 48 to 61%
- Membrane manufacturer software used to calculate water and energy savings

ani ⊦	lydranau	utics RO Pr	oject	ion Prog	ram - [(Calcula	tion of po	wer	requireme	nt]
File	Analysis	RO Design	UF (Treatment	Calculat	tion Gra	phs Help			
									Main	
	F	eed pressur	е				bar	•	12.8	
	C	oncentrate	press	ure			bar	•	8.8	
	Р	ermeate flo	w				m3/hr	-	143.0	
	Р	ump Feed F	low						225.2	
	в	ecovery rat	io %						63.5	
		ump efficier	-	,					83.0	
		lotor efficie	-						93.0	
		RT efficien	-	•					83.0	
		RT backpre		•			psi	-	0.0	
		-					par			
_	Р	ower/Stage	:/Pass	\$					101.7	
	Р	umping ene	rgy				kwhr/m3	-	0.61	
	Р	umping pow	er				kw	-	103.6	
	B	ecovered p	ower				kw	•	16.4	
	Р	ower require	ement	t			kw	-	87.3	
									Print	
		Default v	ماليم							
	×		alues						Clear	

Montréa 2

19-24 September 2010

Operational Impact – Genesys CAS

Total Cost Saving	Skid 1a
Water Saving, m ³ /annum	1,121,280
Energy Saving kWhr	857,000
Energy Costs Saving, US\$/annum	\$60,000
Membrane Replacement US\$ pa	\$39,000
Chemical Saving, US\$ pa	\$37,000
Total Saving, US\$ pa	\$136,000

19–24 September 2010

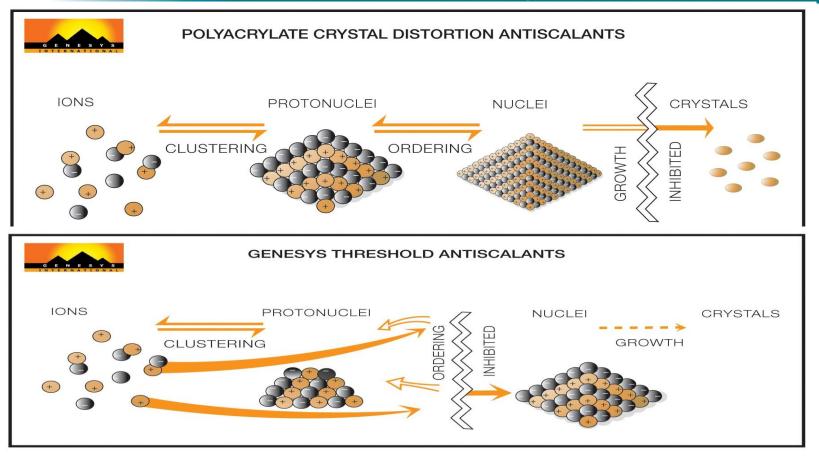
Efficient operation at high silica levels

- Silicon Dioxide, SiO2. Silicon and oxygen are the two most common elements in the Earth's crust.
- Silica solubility: increases with pH & temperature

19-24 September 2010

Silica Chemistry

- 1. <u>Colloidal Silica Non-reactive</u>
- 2. <u>Dissolved Silica Reactive</u>
- Colloidal Silica doesn't permeate and so will foul membranes – Alumino-silicates clay
- Silica deposition increases in presence of iron. Manganese and aluminium



19-24 September 2010

Genesys Si – combines phosphonate and polymeric compounds

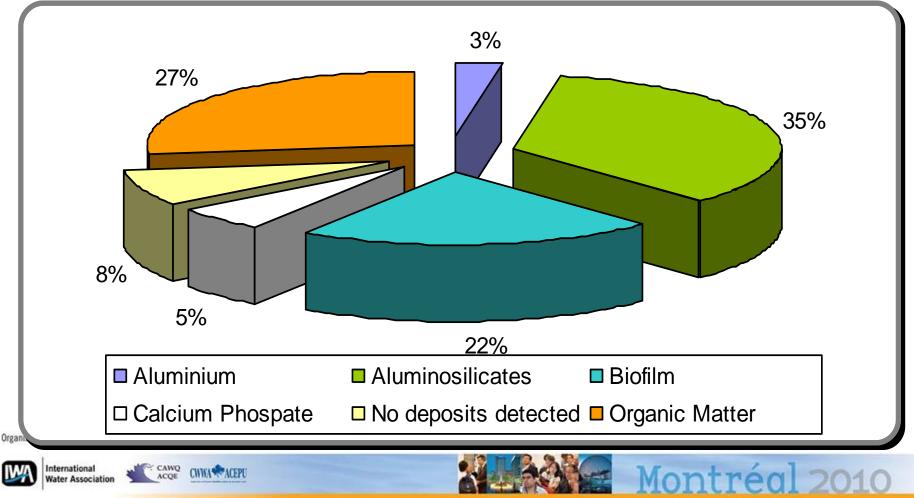
Montréal /

Montréal 2010

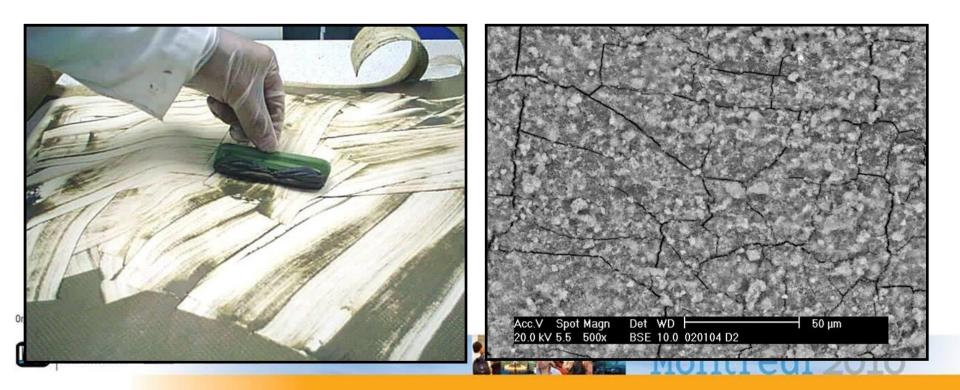
19-24 September 2010

Silica Case Study – Genesys SI

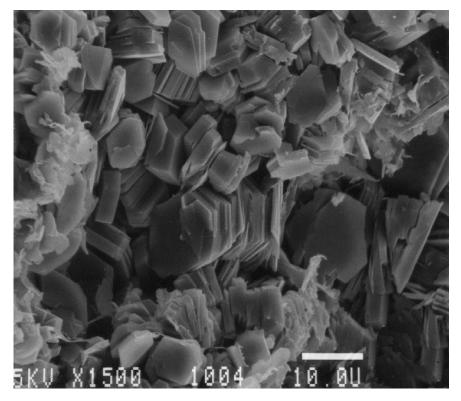
Case Study	BWRO Arica Chile
Parameters	Improvements
Feed Silica 60mg/l	Reject 256mg/l
pH 7.2 (reduced to 6.5 H ₂ SO ₄)	Recovery rate Improved to 75%
4 skids – 2 stage 864 elements	3.8mg/I Genesys SI
Permeate 18,000 m ³ /day	Water saving 2,566,680 m ³ /year
Operating Recovery 60%	Energy Saving 3,836,160 kWhr/year
Silica fouling – 2 monthly cleaning	Energy Costs US\$268,531



Cleaning Clay from Fouled membranes


Lead Elements 2001-2009 Source: GMP Laboratory Madrid

- Most common foulant in lead membrane elements
- Clay is colloidal alumino-silicates
- Source is erosion products in surface waters
- Reduction in flux and increases $\Delta \mathsf{P}$



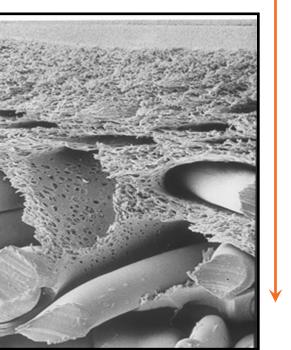
World Water Congress & Exhibition

19-24 September 2010

Montréal 2010

Sheet structure – Tetrahedron rings Water in mineral crystal structure Plasticity – irreversible deformation under pressure

International Water Association

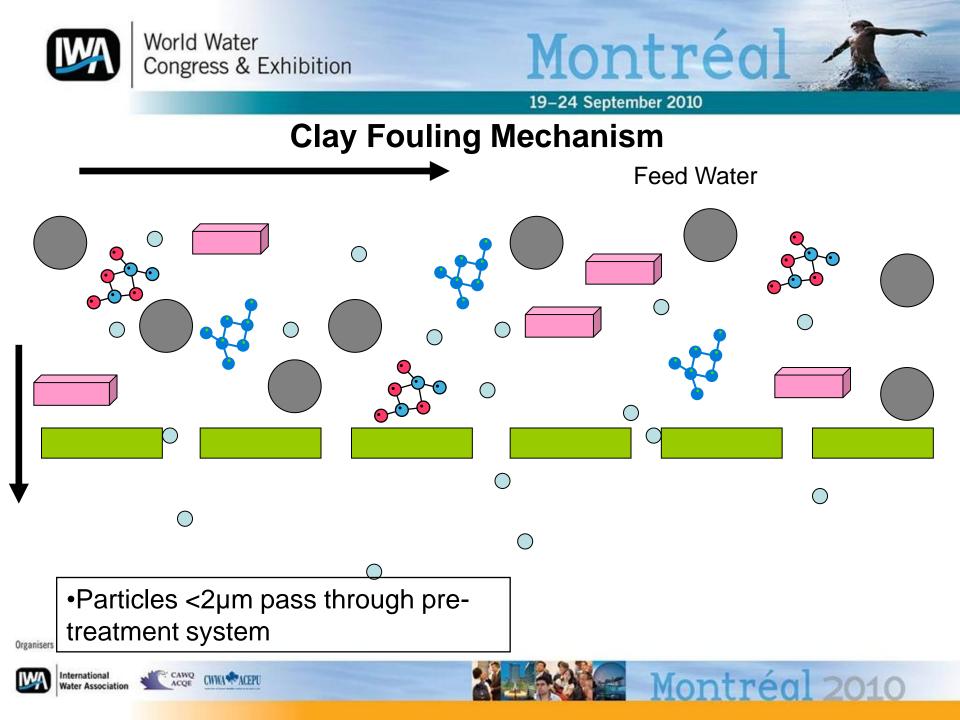


Powdered product - 100% active

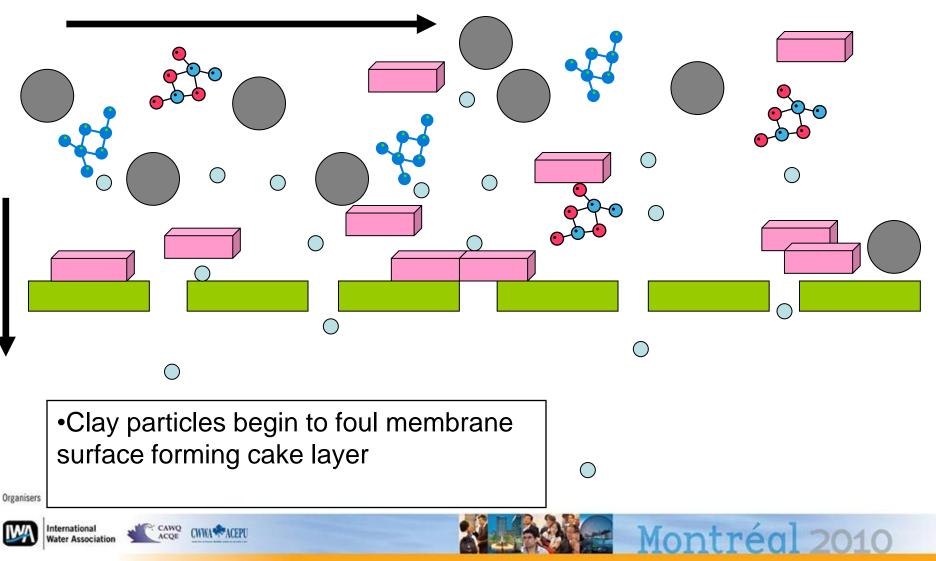
- Phosphate cleaner, detergent,
- Surfactant
- Ionic strength builder to generate normal osmosis, helps "clear" the pores.

Normal Osmosis

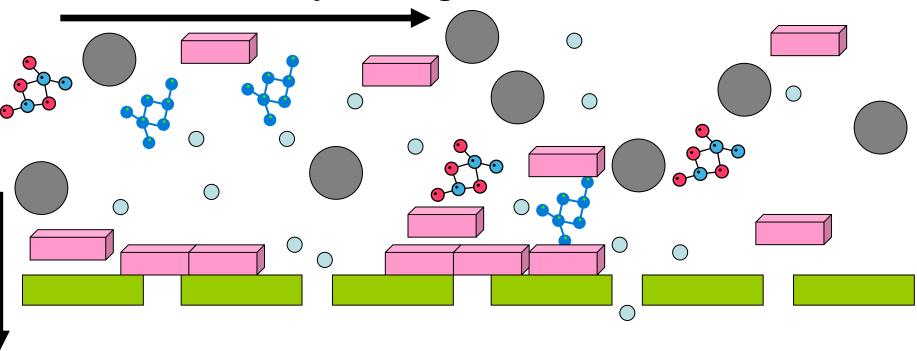
To the second se



Montréal 2010



Clay Fouling Mechanism



 \bigcirc

Montréal 2010

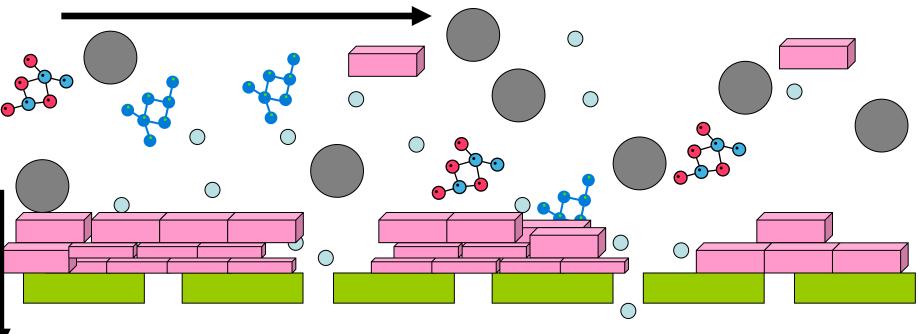
19-24 September 2010

Clay Fouling Mechanism

Fouling begins to reduce flowFeed pressure increased to compensate

 \bigcirc

International Water Association

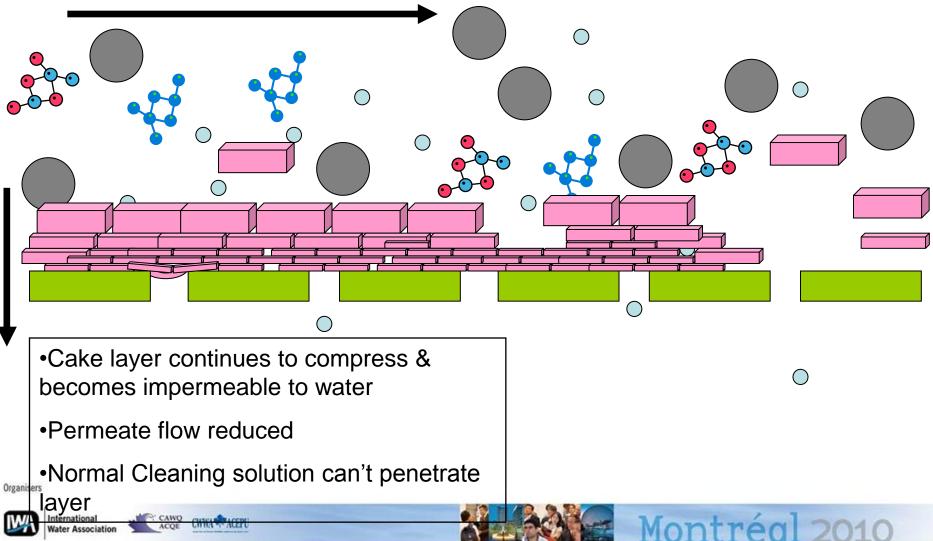


19-24 September 2010

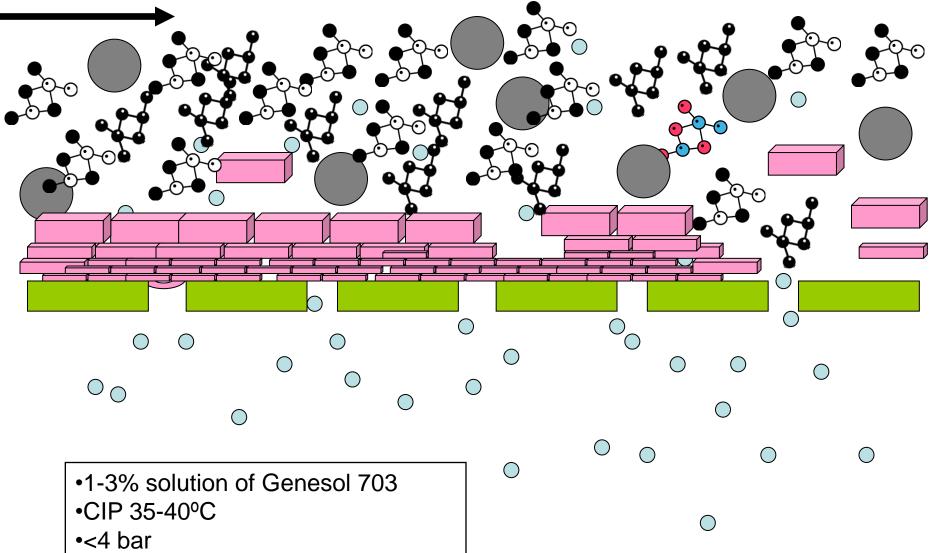
Clay Fouling Mechanism

•Plasticity – increased feed pressure deforms & compresses particles

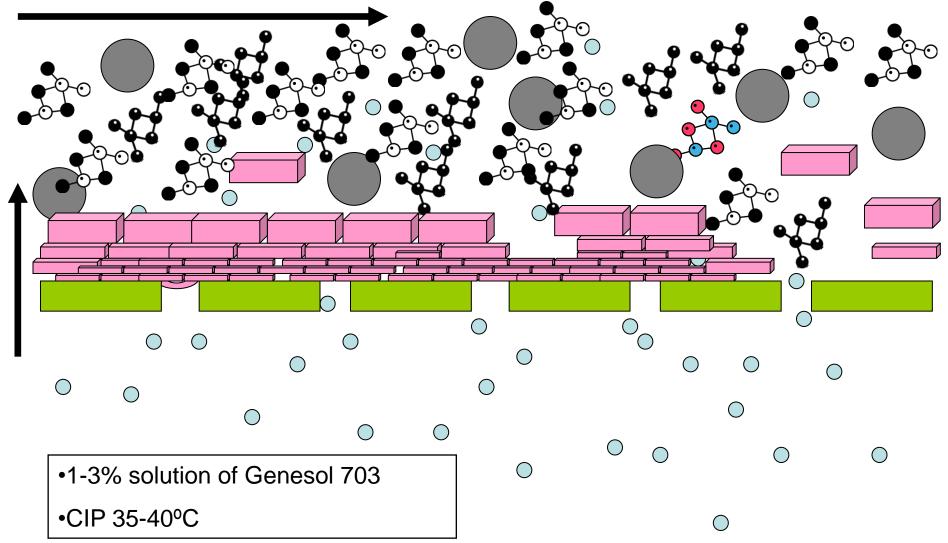
•Pores become blocked & foulant less permeable to water.



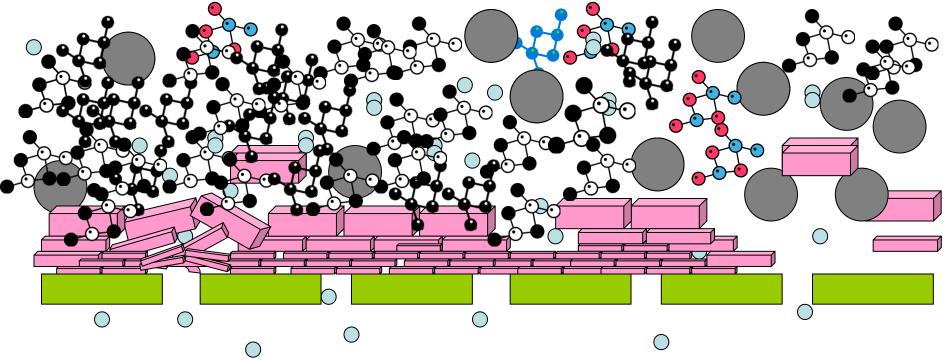
Clay Fouling Mechanism



Genesol 703 Cleaning low pressure



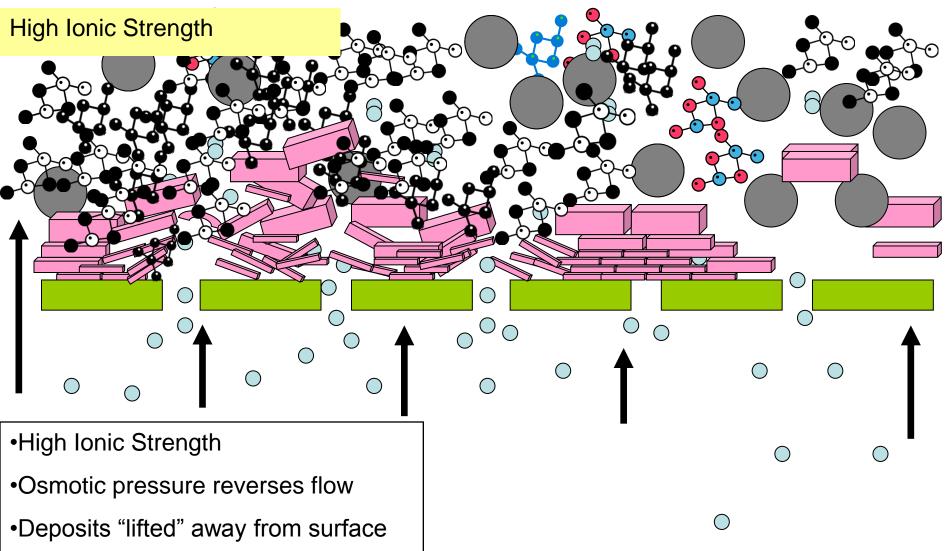
Add Cleaning Solution



Mode of Action – surface tension

•Water/surface inter-phase – surface tension reduced, surfactant penetrates deposit

•Deposit becomes more permeable allowing G703 to penetrate



World Water Congress & Exhibition

19-24 September 2010

Mode of Action – deposit removal

•Minimicae abracian

 \bigcirc

 \bigcap

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

19-24 September 2010

 \bigcirc

 \bigcirc

Low pressure flush

()

 \circ

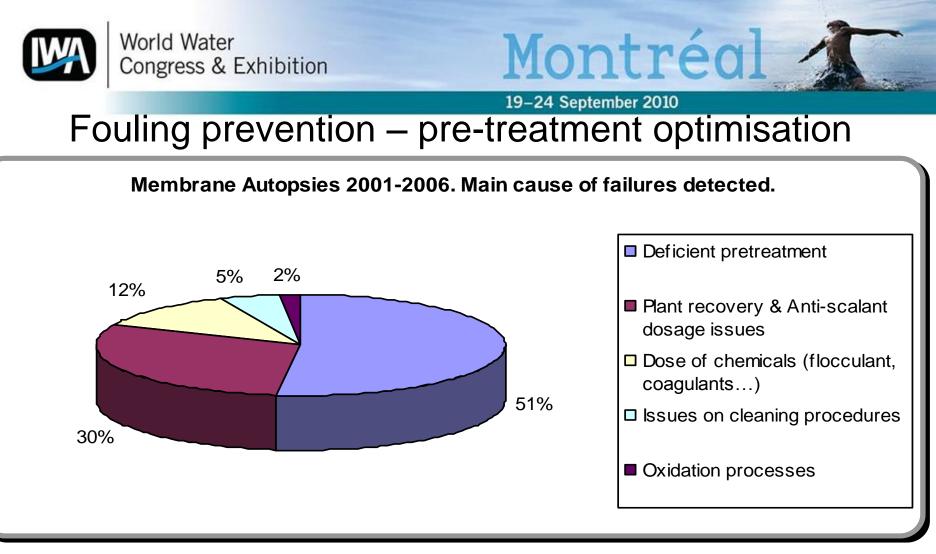
()

 \bigcirc

•Flushing removes particles

 \bigcirc

 \bigcirc


 \bigcirc

()

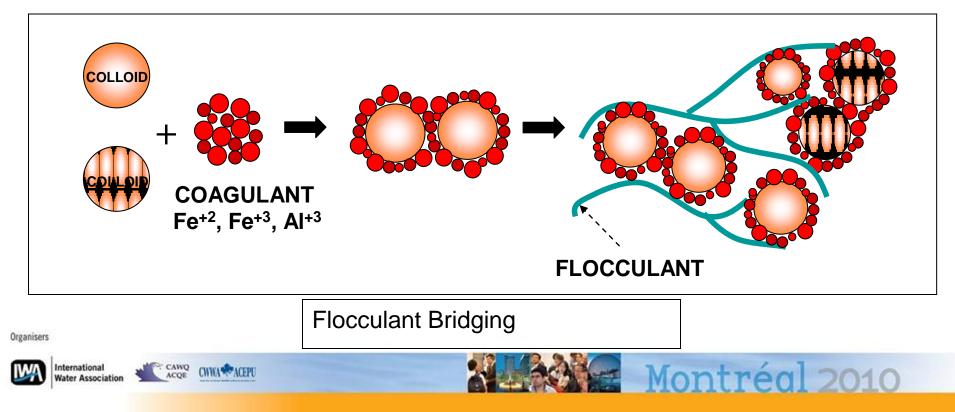
 \bigcirc

 \bigcirc

 \bigcirc

63% of RO membrane failures are caused by inefficient pre-treatment or coagulant/flocculant fouling

Montréal 2010


CWWA ACEPU

Chemical Pre-treatment Mechanisms

- Flocculation bridging of particles by polymer chain forming flocs
- · Particle agglomeration allows mechanical removal

19–24 September 2010

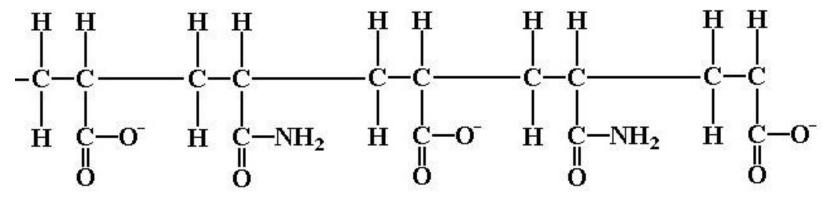
Cationic & Anionic Flocculants

- Cationic Flocculants:
 - Acrylamide copolymers with cationic monomer
 - Polyquaternary amines are pH insensitive
 - Chlorine resistant
 - Inorganic suspended solids removal
 - High molecular weight effective at removing large amounts of solids.
- Anionic Flocculants:
 - Acrylamide copolymers contain 2 types of monomer unit
 - pH sensitive functions best > pH 6
 - Target Organic removal

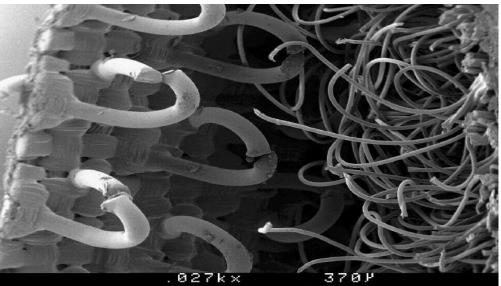
Montréa

Pre-treatment & membrane fouling

- Established view that despite the advantages of cationic flocculants they are incompatible with RO & NF membranes:
 - Soluble Fe³+ or Al³+ form hydroxides fouling membrane surface
 - Acrylate antiscalent reaction fouls membranes
 - Aluminium & iron based coagulants may attach direct to membrane surface
 - Oil or latex in some flocculants may adhere to membrane surface.


Iron Acrylate Fouling

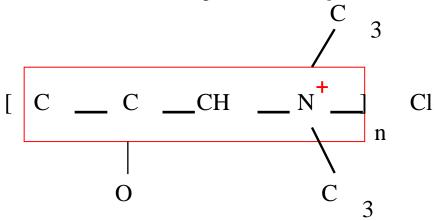
Aluminium Fouling

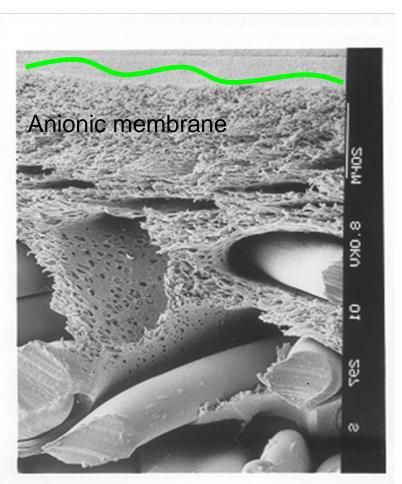


Pendular branches

•Hook on to membrane

•Oil or latex suspensions





Polyamine (Genefloc GPF) flocculant

- •Charge on molecule backbone
- Loose attraction on membrane
- •Subject to shear forces
- •Cationic charge neutralised by anionic phosphonate antiscalant

19-24 September 2010

Genefloc GPF – Case Study

- 1,400 m³day SWRO plant
- Feed tank 3 hour residence time.
- Genefloc GPF dosed at 2mg/l with 0.3mg/l sodium hypochlorite
- 3 dual media filters sand & anthracite
- 5 µm cartridge filters
- Sodium bisulphite dosage & Genesys LF antiscalent
- 2 trains of 56 DOW SWHR 380 RO membranes
- Plant operational with the same membranes since September 2003

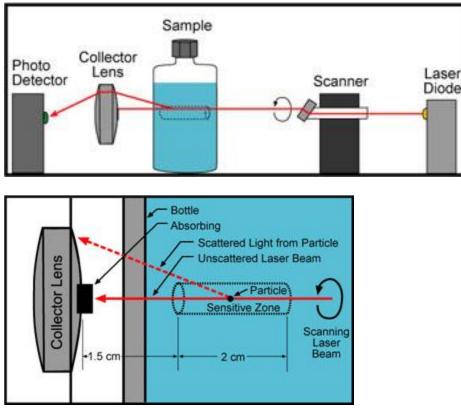
19-24 September 2010

GPF feed water treatment – Leparc et al 2005

2005	SW Intake	Well SW	Raw Water	DMF effluent	CF Effluent
Turbidity (NTU)	1.6	0.3	0.4-1.1		
SDI 3 min	18.3	7.1	11.8		
SDI 5min	13.2	5.4	9.0		
SDI 15min	DI 15min 5.8 2.6		4.4	2.1	2.0

Genefloc GPF – Conclusions

- Cationic charge located on backbone not pendular sub branches preventing irreversible membrane attachment
- Molecular Size long chains prevent pore attachment allowing easy removal by shear forces
- **Solubility** dilution & low dose rate allows easy absorption onto media filter surface



19-24 September 2010

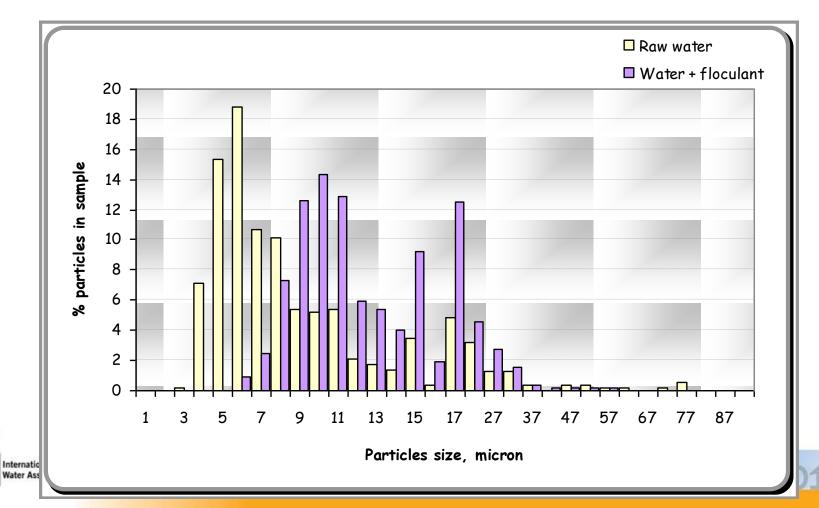
Optimising pre-treatment – reducing membrane fouling

		output inters	Utilities Automode	e nep																	
	Σ	STOP 🛛 🚺	123 🌐	0%	80%			PH	I IS	0	%⊳		8	>							
			Interim								S	pect	rex	Lase	er Pa	rticle	Cou	nter	800-8	22-39	940 v8.
#	um	%	Count	0	20		40	e	60	80		100		120		140	16		180		200
	um			H ++	+++	++	++	\vdash	- + +	÷	Ĺ <u></u>	++	++	++	++	H H	++	Ĩ.		\mapsto	
	<	-0.00	0	┥.																	Filte
1-1-	-1-	-0.00	0	- I .																	
2	-2-																				0%
-3-	-3-	5.17	67																	.	
4	-4	-11.78-	152																		
-5-	-5-	-10.06																			A-T
<u>6</u>	<u>6</u>	8.62	-111-																		5 s
8-			96 63																		
	ĝ	4.89																		· [
-10-	-10	4.89	63																		S-T
	-11-	4.69	52																		5 s
-12-	-12-																				
-13-	-13-	0.86-	11																	- F	
-14-	-14-	-2.30-																			Dilut
-15-	-15-		48	_																	1.00
-1ĕ-	-16-			_																	1.00
-17-	-17-			_																·	
-18-	-22-	-7.85-		_																	Offs
-19-	-27-	4.08		_																	
-20-	-32-	2.51	32	_																	0.00
-21-	-37-	0.31	4	_																·	
-22-	-42-	-0.94	12																		0-1
-23-	-47-	-0.94	12																		Gair
-24-	-52-	-0.94	12																		5.55
-25-	-57-	0.63-																			
-26-	-62-	0.63		_																	
-27-	-67-	0.31-	4	-																	Coun
-28-	-72-	-0.00	0	-																	128
-29-	-77-	-0.31	4	-																	
	-82	-0.31-	4																		
-31-	-87-	0.31-	4																		Phi

Montréal 2010

Particle counting instruments have became a valuable tool when DESIGNING, EVALUATING and OPTIMIZING FILTRATION SYSTEMS.

Particle counter



Optimizing coagulant and flocculant dosing using particle counter

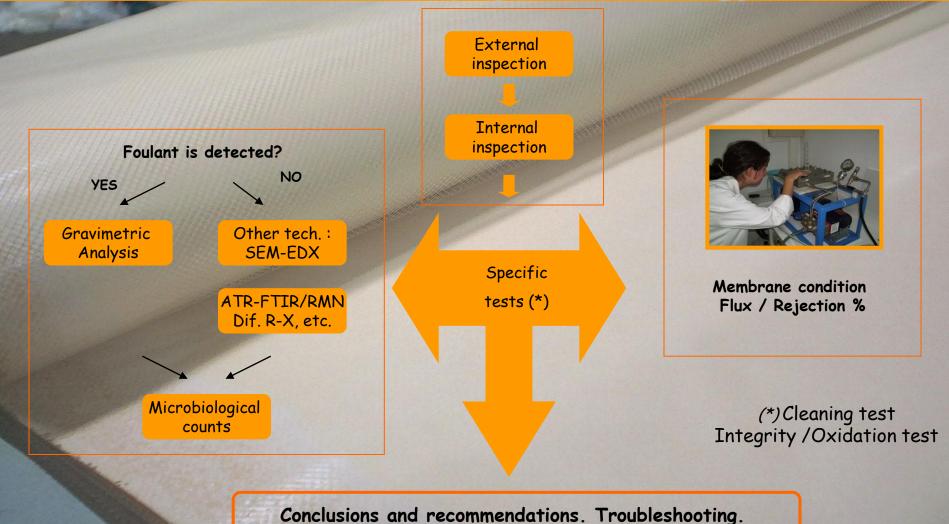
19-24 September 2010

Cleaning Frequency & Efficiency

DOW FILMTEC"..... the correct pH is critical for optimum foulant removal. If a foulant is not successfully removed, the membrane system performance will decline faster The time between cleanings will become shorter, resulting in shorter membrane element life and higher operating and maintenance costs"

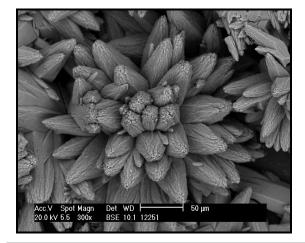
Hydranautics:

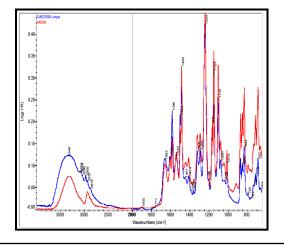
"The appropriate solution to use can be determined by chemical analysis of the fouling material. A detailed examination of the results of the analysis will provide additional clues as to the best method of cleaning"

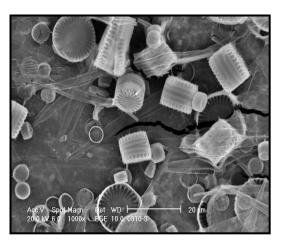


Montréa

Membrane Autopsy Methodology


Membrane Autopsy Chemical & Physical Damage





Foulant Identification – GMP Madrid

Montréal 2010

Foulant Identification:

- Scanning electron microscopy (SEM-EDAX)
- Infrared Spectroscopy (ATR-FTIR)

- X-Ray Diffraction analysis ATR
- Nuclear Magnetic Resonance (NMR)

Membrane Autopsy

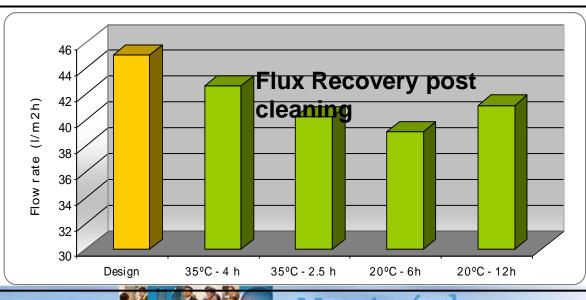
Organisers

Genesol Product Selection

•Genesol products tested against the foulant under different conditions

•Product selected based on recovery of membrane to design flux and salt rejection

•SEM-EDAX comparison of membrane surface before and after cleaning procedure

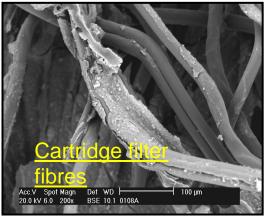


ternational

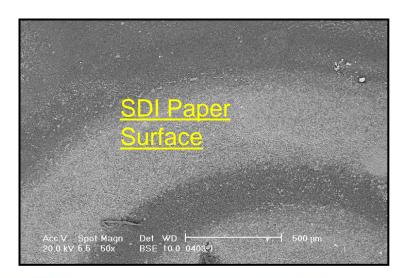
ater Association

CAWQ

CWWA ACEPU



World Water Congress & Exhibition


19-24 September 2010

Membrane Autopsy alternatives

Cartridge Filter: •SEM-EDAX identification of foulants on cartridge filter

> **SDI Filter Paper:** SEM-EDAX of 0.45 µm SDI filter paper deposit identification

Montréal 2010

Acc.V Spot Magn Det WD 20.0 kC 6 0 F600x DBSE P0 0 0402-2 DEDOS

Membrane Autopsy

- Monitoring of Membrane condition helps prevent problems.
- Process gives positive answers in event of failure.
- Ensures optimum cleaning programme application.
- Scientifically based answers in event of membrane issues.

19-24 September 2010

Conclusions

- RO engineers design innovations
- Chemists help make the plant work
- Lab techniques help improve operation

